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ABSTRACT 
There is currently considerable interest in low-cost, lightweight, compactly packagable 
deployable elements for various future missions involving small spacecraft. These 
elements must also have a simple and reliable deployment scheme and possess zero or 
very small free-play. Although most small spacecraft do not experience large 
disturbances, very low stiffness appendages or free-play can couple with even small 
disturbances and lead to unacceptably large attitude errors which may involve the 
introduction of a flexible-body control system. A class of structures referred to as 
"rigidized structures" offer significant promise in providing deployable elements that will 
meet these needs for small spacecraft. The purpose of this paper is to introduce several 
new rigidizable concepts and to develop a design methodology which permits a rational 
comparison of these elements to be made with other concepts. 

INTRODUCTION 
There is currently considerable interest in low-cost, lightweight, compactly 

packagable deployable structural elements for various future space missions involving 
small spacecraft2. In addition to these requirements, simplicity and reliability of 
deployment are of paramount concern. In many instances the concern over the cost and 
reliability of deployable components leads spacecraft designers to either not consider 
them at all, or to use existing deployable components with low stiffness or joint 
deadbands. In either case, spacecraft performance for such missions can be severely 
compromised due to the lack of well accepted, high performance deployable components. 

Although most small spacecraft do not experience large disturbances, very low 
stiffness appendages can couple with even small disturbances and lead to unacceptably 
large attitude errors which may involve the introduction of a flexible modes control 
capability onboard which increases spacecraft cost. Thus, there exists a need in small 
spacecraft for stiff deployable components which are truly low cost and reliable. 

The current commercially available SOA for deployable beam elements includes 
the unfurlable STEM, the continuous-coilable-longeron mast, the FASTMAST as used 
for the Tether satellite, and unfolding "Lazy-Tong" devices which deploy a few bays of 
panels such as on the SEASAT. The other approach used in deployment is to simply 
hinge panels or elements together with no supporting structure. None of these available 
deployable devices satisfies all of the desired requirements for the new generation of 
lighter, faster, and cheaper, small spacecraft. 

A class of structures referred to as "rigidized structures3I' offer significant 
promise in providing high performance structural components for the new small 
spacecraft. A large reflector based on inflatable and rigidized concepts is currently being 
built for an In-Step flight experiment4 as a proof of concept for a microwave and VLBI 
antennas. Such reflectors have also been studied for optical interferometers5 and solar 
concentrators6. The main difference between this paper and reference 1 is that the mass 
of the beam is included in all of the applicable equations. This provides a more accurate 
assessment of the performance potential of the new "rigidizable" structural concepts 
when compared to the alternate concepts. 
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BEAM DESIGN METHODOLOGY 

General Approach for Developing Beam Weight Equations 
The primary purpose of this paper is to develop an approach to enable a rational 
comparison to be made of weight and diameter of different deployable beam concepts for 
small spacecraft. The four general beam concepts to be compared are as follows: 

a. Unfurlable STEM7 
b. Coilable longeron8 
c. Space rigidizable organic matrix composite (inflatably dep1oyed)g 
d. Unfurlable thin walled aluminum (inflatably deployed)3>10>11 

For purposes of comparing the relative merits of the different beam concepts, one of two 
possible moment inducing load conditions is applied to the deployable beam cantilevered 
from the spacecraft. One possible loading configuration is to have the beam supporting a 
tip mass cantilevered from a spacecraft with a root acceleration of 6 (Sketch a). The 
second loading condition is with the beam supporting the tip mass and cantilevered from 
a spacecraft that has a lateral acceleration loading from a fired thruster (Sketch b). 

Spacecraft 
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Deformed Beam 

Sketch a.- Schematic of Spacecraft with Deployable Beam 

SDacecraft L 

Deformed Beam 

Thrust I 
Sketch b.- Schematic of Spacecraft with Two Deployable Beams 
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For the purposes of this paper, only the second case with the lateral acceleration loading 
will be considered for the numerical examples. However, it should be pointed out that 
for any lateral acceleration loading there is a comparable root acceleration. This will be 
demonstrated in a later section. 

Although there are numerous factors which contribute to the concept selection and design 
of deployable beams for spacecraft, attention in this paper is focused on two primary 
design drivers. These are 1) the moment constraint resulting from the lateral acceleration 
loading shown in Sketch b, and 2) a lowest beam natural frequency constraint. 

The constraint on frequency is commonly imposed upon spacecraft components to deal 
with flexible control issues, while the constraint associated with a moment imposes a 
loading that the beam must be able to withstand without failure. A general description of 
the four beams considered in this paper and how they are modeled are given in the next 
sections. 

a. Unfurlable STEM.- This class of structures involves materials which are thin enough 
to be rolled up for packaging without yielding, and subsequently unfurled into the 
deployed state. The classic example of this type of structure is the STEM and BISTEM7. 
The STEM structure is a thin metallic sheet which is coiled into a compact cylindrical 
roll and deployed on-orbit. The design is such that no involved bending strains exceed 
yield. These structural elements unfurl into a long tubular shape, thus forming a 
deployed beam. The major shortcomings of these elements is that a slit is required along 
the length to accommodate low strain packaging, resulting in very low beam torsional 
stiffness, and that the deployment mechanism is quite heavy. The BISTEM beam is 
composed of two interwoven STEMS which provides additional torsional stiffness from 
the resulting friction between the overlapping elements. Under some loading conditions 
a slippage can occur between the overlapping elements resulting in unwanted 
deformation or dynamic perturbations. In the present paper the STEM is treated as a 
simple steel tube with a wall thickness of 0.005" (5 mils). 

b. Coilable longeron.- The coilable longeron beam is a highly used deployable beam 
and is well described in reference 8. The weight and performance equations for this 
beam are taken from ref. 8. The popularity of this beam arises from its high reliability 
and wide experience base. Its shortcomings are that it requires a relatively heavy canister 
and is limited in size to about 20" in diameter due to high straining in the stowed 
condition. 

c. Space rigidizable organic matrix composite (inflatably deployed) .- This concept is 
basically a simple tubular beam fabricated from a fiber fabric impregnated with a matrix 
that is rigidizedg after pressure deployment in space. This concept is still in the 
development stage, however, it offers the promise of a very simple, low-cost, compactly 
packagable beam. In the present paper the tube is considered to be fabricated fi-om a bi- 
directional KEVLAR fabric impregnated with a rigidizable matrix. The effective 
properties assumed for the beam material are: E = 4x106 psi, thickness = 0.01 l", and a 
weight density of 0.05 lb/in3. 

d. Unfurlable thin-walled aluminum (inflatably deployed).- This concept is basically 
a thin-walled aluminum tubular beam pressure deployed in space. For this approach the 
tubes are made from thin (-3 mil) low-yield-stress aluminum sandwiched between two 
thin layers of reinforced Kapton film for structural strength and initial inflatant 
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containment3,10. The deployment is obtained by pressurization of the tube to a 
cylindrical shape. After deployment the pressure is increased to yield the thin aluminum 
into its final wrinkle-free state. The tube is then de-pressurized and remains in a 
cylindrical shape providing a high performance structural member. Although this 
concept is still in the development stage a full scale deployable solar array has been built 
and ground demonstratedlo. This concept has the potential for being an extremely 
simple, low-cost, and reliable deployment system. The primary shortcoming of this 
concept is the low level of development that has occurred in exploring different hybrid 
wall concepts. In the present paper the beam is simply considered to be fabricated from 
0.003" thick aluminum with a modulus of 10x106 psi. 

Weight of a Thin Walled Tubular Beam Subjected to Frequency 
and Root Moment Constraints 

The weight of a thin walled tubular beam as shown in Sketch c can be written as: 

where p is the weight density of the beam material, and R and t are radius and thickness 
of the tubular beam respectively. 

Sketch c.- Schematic of tubular beam 

Frequency Constraint.- For a cantilever beam with a tip mass, mtip, and mass of the 
beam, mbm, the first natural bending frequency f is approximated by beam theory as: 

where 

- 1 1  3EI I=-- 
2.n dL3(m, + 0.227mb) 

- p( 2n;Rt)L 
mbeam - 

g 

and E is the extensional modulus of the tube material. If the tube is made of an 
orthotropic material, E is the extensional modulus in the long direction of the beam. The 
moment of inertia of a thin walled tubular beam is approximated by: 
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Substituting for I from equation T3 into equation T2 yields the following equation 
governing R and t: 

3 Lf R t=- 
3E.n 

- 
where f = L2(mtip + 0.227m,.-)(2xf)' 

Beam Root Moment Constraint.- The root moment for a cantilevered beam with tip 
mass and beam mass subjected to a lateral acceleration loading, (s.g.)g is: 

M = (f.s.)(s.g.)ga mtipL + mbem - 

where a is the dynamic overshoot factor due to a suddenly applied loading, f.s. is the 
factor of safety, and s.g. is the fraction of gravitational acceleration. a and f.s. are 
coefficients like s.g., and will vary depending upon the problem considered. 

The root stress CY in the cylinder due to this moment is: 

The failure mode in the tubular beam is assumed to be local wall buckling of the cylinder 
which is given by: 

Et 
R  local = c- 

This is a generalization of the wall buckling equation for an isotropic cylinder which has 
a theoretical value of C = 0.6. In the present study, the constant C was determined for the 
particular orthotropic wall construction being considered. 

Combining equations T5, T6, and "7, a second equation relating R and t is obtained as: 

mtipL + mbem - 

n;CE 
Rt2 = 

Solving the Constraint Equations for the Radii .- In reference 1, a single closed form 
equation governing the weight of a tubular beam was found by solving equations T4 and 
T8 simultaneously and substituting the results for t and R into the weight equation T1. 
Now, however, because Tand M are both in terms of mbm, which is a function of R and 
t, solving the equations simultaneously and obtaining a closed form solution becomes 
difficult. The equations, which are expanded forms of T4 and T8 become: 
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,. 1 .I 3ExR3t 
p(2xRt)L 

g 
* = G{L,3( m,, + 0.227 

It can be seen that the addition of the beam mass complicates the expressions. Therefore, 
the practical constraints on the thicknesses, due to the compact packaging constraints on 
the different tubular beam concepts, must be utilized. This dictates values for the 
thicknesses of the respective beams, and now the value of R can be determined in terms 
of the fi-equency, or in terms of the moment. This is dealt with in the next section. 

Beam Weight Considering Thickness'Constraints. - For each of the tubular beam 
concepts considered in the present paper there is a limitation on the tube wall thickness. 
This limitation is imposed in order to compactly package the material without excessive 
damage. To account for this thickness constraint, weight equations are evaluated for 
both frequency and root moment constraints considering the thickness to be a constant. 

Due to the complexity of equations S 1 and S2, imposed by the addition of the beam mass, 
Mathernatica is relied upon to solve the constraint equations for their corresponding radii. 
Each radius, along with the thickness value for the tubular beam being considered, is then 
substituted into the weight equation T1. The result is two weight equations, the 
maximum of which is required to guarantee that both design constraints are met. (The 
complete Mathernatica code can be found in Appendix A.) It should be noted that the 
weight corresponding to the frequency constraint increases for increasing thickness t 
while the weight corresponding to the root moment constraint decreases for increasing 
thickness t. 

Weight of a Coilable Longeron Beam Subjected to Frequency 
and Root Moment Constraints 

The weight WC.L. of a coilable longeron beam as shown in Sketch d, is taken from 
reference 8 as: 

where A, is the area of each longeron which is positioned at a radius R from the beam's 
centroid. For the coilable longeron beam, the two unknowns to be determined from the 
frequency and root moment constraints are A, and R. 
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Gross-Section 
Sketch d. Schematic of coilable longeron beam 

The quantities inside the parentheses of equation C1 are the weight of the three longerons 
and the factor 3.4 is an empirical constant which accounts for the beam's battens, 
diagonals and joints. This empirical constant is taken from reference 8 where it was 
determined by curve fitting data from several coilable longerons beams which had been 
built. 

Frequency Constraint .- The frequency equation for a cantilevered coilable longeron 
beam with beam mass and a tip mass, is taken to be the same as that for the tubular beam 
and is given by equation T2. The bending moment of inertia of a three longeron beam 
about an axis passing through its centroid is given by: 

I = 1.5AlR2 

It should be noted that the moment of inertia of a three longeron beam is independent of 
the angle of the axis which passes through the beam's centroid. In other words the beam 
behaves elastically similar to a cylindrical beam with the same radius R, and the same 
amount of material at that radius. 

Substituting the expression for I from equation C2 into the frequency equation T2, results 
in an equation governing R and Ae as: 

LT 
3( 1.5)E 

R ~ A ~  = 

- 3.4(3pAeL) 
mbeam - where 

g 

Root Moment Constraint.- The root moment is taken to be the same as that for the 
tubular beam and is given by equation T5 with the appropriate change to mb-. For the 
coilable longeron beam, failure is assumed to be buckling of the root longeron due to 
compression from the root moment. Longeron buckling is taken as the simple support 
Euler load as: 
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where the beam bay length is given in reference 8 as 1.14R, and the moment of inertia I, 
of a longeron is: 

where 

A? I, =- 
4n 

nd2 
4 

A,=- 

Combining equations C4, C5, T5, and T6 yields a second equation governing R and A, 
as: 

R 1.5nE 

Equation C6 represents a second equation which governs the coilable longeron radius R 
and the longeron area A,. In addition to equations C3 and C6, an additional constraint8 
must be imposed upon the longeron diameter to accommodate packaging as discussed in 
the next section. 

Longeron Packaging Constraint.- For elastic packaging8 , the longeron diameter, d, 
must be limited as follows: 

-&=- d -- 
2R 2R 

where E is the longeron allowable strain. In reference 8 this strain value was taken as 
0.0133 for fiberglass and is the same value used in the present paper. It should also be 
pointed out there is a factor of 2 error in equation 12 of reference 8. The left hand side of 
equation 12 should read d/2R as in equation C7 rather than d/R. 

Coilable Longeron Beam Weight. - Equations C3, C6, and C7 represent three 
equations for the two unknowns R and A,, thus the design is over specified and must be 
separated into three possible design cases to determine which two of the three conditions 
govern. The three possible cases are: (1) impose the frequency constraint equation C3 
and the root moment constraint equation C6, (2) impose the root moment constraint 
equation C6 and the stowage constraint C7, and (3) impose the frequency constraint 
equation C3 and the stowage constraint equation C7. Case 3 is never critical, thus, the 
higher of the two weights resulting from cases (1) and (2) must be taken as the coilable 
longeron weight. 

As with the tubular beam, the addition of the beam mass to equations T2 and T5 
complicate the constraint equations, C3 and C6 in this case. The expanded forms of C3 
and C6 are: 



Muthematica is again used to solve the frequency constrained equation, S3, and the root 
moment constrained equation, S4, for their corresponding values of A,. Each value of 
A, is then substituted into the weight equation C1. The result is two weight equations, 
the maximum of which is required to guarantee that both design constraints are met. 
Similarly, Mathematica is used to solve the constraint equations for their corresponding 
radii, which are then used to obtain the plots of tlie coilable longeron diameters. 

EXAMPLE BEAM WEIGHT RESULTS AM) DISCUSSION 
A general comparison of the various deployable beam concepts constructed of different 
materials is difficult to make over a wide range of the frequency and loading design 
parameters T and M. The reason for this is that the different beams are governed by 
practical constraints such as limitations on material thickness which in turn are a function 
of the level of the design parameters. In order to obtain insight into the relative weight 
and stowage efficiency of the deployable beam concepts considered in the present paper, 
a specific set of design requirements are selected which are considered to be 
representative of a range of typical spacecraft conditions. The following assumptions are 
made: 

lateral acceleration loading (s.g.)g = 0.015 g 

natural bending frequency = 0.02 - 1 HZ 

beam length 

tip mass (respective to length) 

= 3 5 7 ,  14,28 meters 

= 0.01,0.04,0.16,0.16 lb . sec2/ in 

dynamic overshoot factor (a) = I  

factor of safety (f.s.) = I  

local wall buckling constant (C) = 0.2 

The first requirement considered is a root moment constraint imposed by a 0.015 g lateral 
acceleration loading. As mentioned previously, the lateral acceleration loading has a 
corresponding root acceleration which can be found in the following manner using the 
moment due to an angular acceleration, and the moment due to a lateral acceleration 
loading as given by equation T5: 
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Solving for 6 yields: 

By adding the beam mass to equation R1, the angular 

(R2) 

acceleration solved for in R2 
becomes beam dependent, and, therefore, material dependent. Also, since mbem is a 
function of R for the tubular beams, the angular acceleration becomes dependent upon 
frequency, when the frequency constraint is used to find R. In the case of the coilable 
longeron, mh is a function of A,, which is a function of frequency when the 
frequency/root moment constraint is used to find A,. This change to angular 
acceleration, however, has no significant effect on the beam weights compared to the 
results when angular acceleration does not include the beam mass. 

The other design requirement considered is that of a lowest natural bending frequency 
constraint. Since the value of this constraint is typically not well defined, it is varied in 
this study to determine its impact on structural weight and beam diameter. 

The other spacecraft input needed to make a design study is the tip mass on the beam. To 
obtain representative mass values for small spacecraft, the inflatable solar array of ref. 10 
was used as an example. This solar array was about 11.5' (3.5) meters long and weighed 
about 7 pounds. Since there are two beams that support this weight, half of the weight is 
assigned to each beam or mtip =3.51b/386in/sec2- .01 lb.sec2/in. For the current 
design study this mass is assumed to vary as a function of the square of the beam length 
to simulate area masses such as that associated with solar arrays. 

To obtain insight into the relative weights and diameters of the deployable beams 
considered in the present paper, four beam lengths (3.5, 7, 14, and 28 meters) were 
investigated. For each length the beam weights and beam diameters are plotted as a 
function of natural frequency. The natural frequency was varied from .02 to 1 Hz to 
cover the range of interest for most spacecraft. The properties used for each of the four 
beams are presented in the following table. 

Since the purpose of this paper is to present the methodology of preliminary design, the 
values of a and f.s. are both set equal to 1, and the local wall buckling constant C from 
eq. T7 was taken as 0.2. 
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L=3.5 meters. - For this beam length the tip mass is 0.01 lb . sec2/in (3.86 lbs). The 
weights for the four deployable beams considered in this paper are shown in figure 1, and 
the associated beam diameters are shown in figure 2. The dashed lines indicate the 
results when beam mass is not included, showing no appreciable change in beam weight 
or diameter has taken place. In figure 1 the 3 mil aluminum beam is the lightest over the 
low frequency range, while the coilable longeron beam is lighter for frequencies greater 
than 0.2 Hz. For this relatively short length the three tubular beams are governed 
primarily by the frequency constraint, while the coilable longeron beam is governed by 
the root momentlstowage constraint at low frequencies and by root moment/frequency for 
the higher frequencies. 

For this short beam length the beam weights are quite low for all four concepts, however, 
as seen in figure 2 there is quite a difference in beam diameters. For the three tubular 
beams the required diameter is 3 inches or less while the required diameter for the 
coilable longeron beam ranges from 3 to 8 inches. The beam diameter will greatly 
influence the stowage volume and deployment weight required for the deployable beams. 
In the present paper the only weight considered for the deployable beams is that required 
for structural performance. For all of the beams there will be a system weight required to 
accomplish deployment. For the STEM and the coilable longeron beams there is a 
mechanical deployment canister required that is typically several times the weight of the 
beam structureg. For the inflatable beams there is the weight associated with the 
pressurization system that must be considered. The details of these auxiliary weights are 
beyond the scope of the present paper, however, these weights will be a strong function 
of beam diameter. 

L=7 meters. - For this beam length the tip mass is .04 lb.sec2/in (15.44 lbs). These 
beam weights are shown in figure 3 while the corresponding beam diameters are shown 
in figure 4. Once again the dashed lines indicate results not including the mass of the 
beam. Some variation is seen in the beam weights and diameters, particularly in the 
frequency constraint for increasing frequency. The rigidizable beam is the lightest for 
very low frequencies followed by the 3 mil aluminum beam up to about .35 Hz, after 
which the coilable longeron beam is the lightest. The strength constrained weight of a 
tubular beam is inversely proportional to the assumed thickness t, when the contribution 
of mbam is relatively small. Thus, if the aluminum thickness could be doubled to 6 mils, 
the weight of the aluminum beam in the low frequency range would be reduced by a 
factor of about two. The tubular beam diameters are seen from figure 4 to be about one 
half of the coilable longeron beam diameters. In fact the coilable longeron diameter 
reaches 20 inches, the size limit of practicality for these beams. 

L=14 meters. - For this beam length the tip mass is .16 lb.sec2/in (61.76 lbs). These 
beam weights are shown in figure 5 while the corresponding beam diameters are shown 
in figure 6. At this length a significant change can be seen between including the beam 
mass and not including the beam mass, for both the beam weights and diameters. This is 
especially apparent when the root moment constraint dominates and when the frequency 
increases. All beam weights increased except for the low frequency range of the STEM 

_beam. The rigidizable beam has the lowest weight up to about 0.2 Hz, beyond which the 
3 mil aluminum beam is the lightest. For these longer lengths it will probably be 
necessary to limit the design frequency to 0.4 Hz or less to keep the beam weights 
practical. The corresponding diameters for these beams are shown in figure 6. The 
diameters, in general, also increased except for the coilable longeron which stayed the 
same. The reason that the diameter of the coilable longeron stayed the same, is that in 
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A: solving equation C6 for R, the term -, when beam mass is included in the moment, is 
M 

A: nearly equal to - when the beam mass is not included in the moment. The coilable 
M 

longeron beam diameter is out of the practical design range for frequencies greater than 
0.3 Hz while the aluminum beam is probably impractically large over the entire range. 
Even the rigidizable begins to assume impractical diameters for frequencies above 0.3 
Hz. The addition of the beam mass does not change the conclusions based on beam 
diameters because the aluminum is even more impractical over the entire range than it 
was without the beam mass. Also the practical design limit for the other beams ends at 
about 0.3-0.4 Hz, up to which point the addition of the beam mass makes virtually no 
difference. 

L=28 meters. - For this length the beam tip mass was not increased over that for the 14 
m beam. If the tip mass were increased as a function of a square of the length this would 
result in a tip weight of about 240 lbs. This was not considered to be practical for most 
applications so the tip weight was kept at 61.76 lbs. It should also be pointed out that this 
28 m length is the same as the IAE (Inflatable Antenna Experiment) support boom 
length4. In fact this length and tip mass are representative of design conditions for large 
inflatable reflector applications. The beam weights for this length are shown in figure 7 
and the corresponding diameters are shown in figure 8. It is obvious at this point that the 
inclusion of the beam mass makes an increasingly greater difference as the beam is 
lengthened. The beam weights demonstrate the greatest difference between including the 
beam mass and not including the beam mass, in the cases of the coilable longeron and 3 
mil aluminum beams. In figure 7 it can be seen that the rigidizable beam is lightest over 
most of the practical frequency range. Because of the rapid increase in beam weight and 
diameter with frequency, the design frequency for such structures would probably have to 
be restricted to 0.2 Hz or less. By restricting the design frequencies to 0.2 Hz or less, the 
effects of including the beam mass are not as significant as they could be for a higher 
frequency. Though, the effects are still significant where the root moment constraint 
dominates. 

Weight as a function of length - The equations in the Mathematica program were 
modified to accept a constant frequency, and become functions of beam length instead 
(Appendix B). In figure 9 the weights of the four beam concepts are plotted as a function 
of length for a fixed natural frequency of 0.2 Hz. This figure demonstrates that the 
rigidizable material beam is quite efficient for the longer lengths. In figure 10 the same 
weight curves are presented with the addition of a 0.006" thick aluminum tubular beam. 
As can be seen from the figure this thickness results in an aluminum beam with the same 
efficiency as the rigidizable material beam. Because of the relatively simple deployment 
process for the aluminum beam, a research effort should be conducted to determine if 
such a beam could be developed. Figure 11 shows the effect on the moment constraint of 
increasing a to 2. Both aluminum beams and the coilable longeron become less efficient 
and increase in weight, especially for increasing length. The STEM and rigidizable 
beams appear to remain nearly the same. 

CONCLUDING REMARKS 
The purpose of this investigation was to develop and demonstrate a design methodology 
for tubular, rigidizable, space beam structures and improve on the accuracy from that of 
reference 1, by including the mass of the beam. This methodology was applied to a new 
class of rigidiz,able beams to permit a rational comparison with alternate deployable 
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concepts. Specifically the rigidizable beams were compared with the STEM and coilable 
longeron beams on a weight and diameter basis. 

A series of equations that included the mass of the beam and a tip mass were developed 
for the weight and diameter for each of the concepts, for the condition of a long beam 
cantilevered from a spacecraft. The two design requirements considered were a lowest 
natural frequency constraint and a root moment constraint imposed by a lateral 
acceleration loading. Although it is difficult to draw completely general conclusions as 
to the relative efficiency of the different beam concepts, representative small spacecraft 
operational conditions were assumed to enable a comparison to be made. 

The two primary rigidizable concepts investigated were a 0.01 1" thick KEVLAR fabric 
impregnated with a rigidizable matrix and a 0.003" thick aluminum tube which is 
rigidized by pressure yielding the material. Beam lengths ranging from 3.5 m to 28 m 
were investigated for a frequency range from 0.02 Hz to 1 Hz. The strength constraint 
imposed was that the beam be required to withstand a 0.015 g lateral loading. The tip 
mass was inertially similar to the mass of a distributed solar array. Results from this 
study are as follows: 

1) Because of the discrete practical thickness constraints imposed on the different tubular 
concepts the active design constraint, frequency or strength, is a function of beam length, 
material properties, and tip mass. For the shorter lengths and higher frequency 
requirements the frequency constraint is active, while for longer lengths and lower 
frequency requirements the strength constraint is active. 

2) The three tubular beams investigated, the KEVLAR rigidizable, the aluminum, and the 
steel STEM tend to have smaller diameters than the coilable longeron beam. 

3) For shorter length applications the 3 mil aluminum beam is the lightest and most 
compact for low natural frequency requirements. 

4) For longer length applications the KEVLAR rigidizable beam becomes attractive from 
a weight and diameter point of view. 

5) If thicker (- 0.006") aluminum beam concepts could be developed, they would be very 
efficient over the entire range of parameters investigated. Since the rigidizable aluminum 
beam is so conceptually simple, it is recommended that alternate wall constructions be 
investigated to extend its range of application. 

6) The addition of the beam mass results in increased weight for the root moment 
constraints, and increased weight as frequency increases, for the frequency constraints. 
These effects become increasingly apparent as the beam is lengthened. 

7) The design methodology developed herein permits a rational assessment of the effect 
of spacecraft requirements (frequency and strength) on deployable beam weight and 
diameter. It is recommended that this methodology be used early in the design process to 
assist in establishing rational and reasonable spacecraft design requirements. Conducting 
a thorough sensitivity study of deployable beam weight and diameter to spacecraft design 
requirements early in the design process should lead to the most robust design at the 
lowest cost in terms of weight and stowage efficiency. 
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Figure 1.- Deployable beam weight as a function of frequency for L = 3.5m. 
(Dashed lines indicate weight without beam mass.) 
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Figure 3.- Deployable beam weight as a function of frequency for L = 7m. 
(Dashed lines indicate weight without beam mass.) 
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Figure 4.- Deployable beam diameter as a function of frequency for L = 7m. 

(Dashed lines indicate diameter without beam mass.) 



L = 14m 
25 

20 

15 

10 

5 

0 I I 

0.2 0.4 0.6 0.8 1 
Frequency (Hz) 

Figure 5.- Deployable beam weight as a function of frequency for L = 14m. 
(Dashed lines indicate weight without beam mass.) 
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Figure 6.- Deployable beam diameter as a function of frequency for L = 14m. 
(Dashed lines indicate diameter without beam mass.) 
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Figure 7.- Deployable beam weight as a function of frequency for L = 28m. 
(Dashed lines indicate weight without beam mass.) 
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Figure 8.- Deployable beam diameter as a function of frequency for L = 28m. 
(Dashed lines indicate diameter without beam mass.) 
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Figure 9.- Beam weight as a function of length for f = 0.2 Hz. 
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Figure 10.- Beam weight as a function of length for f = 0.2 Hz with additional 
aluminum curve for .006" thickness wall. 
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Figure 11.- Beam weight as a function of length for f = 0.2 Hz with additional 
aluminum curve for .006" thickness wall. 



Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

OffIGeneral: :spelll]; OfflGeneral: :spell] ; 

(*Variable Definitions 

alpha = dynamic overshoot factor 
C = local wall buckling constant 
mtip = mass applied to the tip of the beam (lb secA2 / in) 
len = length of the beam (in) 
e '  = modulus of elasticity (psi) 
rho = weight density of beam (lbhnA3) 
t = wall thickness of beam (in) 
g = gravitational acceleration (in / secA2) 
r = radius of beam (in) 
a = area of longeron (inA2) 
epsilon = longeron allowable strain (idin) 
fs = factor of safety for strength (root moment) constraint 
sg = lateral acceleration loading coefficient 
moment = root moment (in lb) 
momn = root moment neglecting the beam mass (in lb) 
1 = moment of inertia (inA4) 
f = natural bending frequency (Hz) 
mbeam = mass of beam (lb secA2 / in) 
wmom = weight of tubular beam with root moment constraint (lb) 
wfreq = weight of tubular beam with frequency constraint (lb) 
dmom = diameter of tubular beam with root moment constraint (in) 
dfi-eq = diameter of tubular beam with frequency constraint (in) 
wmomn = weight of tubular beam with root moment constraint, 

neglecting the mass of the beam (lb) 
wfreqn = weight of tubular beam with frequency constraint, 

neglecting the mass of the beam (lb) 
dmomn = diameter of tubular beam with root moment constraint, 

neglecting the mass of the beam (in) 
dfi-eqn = diameter of tubular beam with frequency constraint, 

neglecting the mass of the beam (in) 
wcl = weight of coilable longeron beam with frequency and root 

moment constraints (lb) 
wcls = weight of coilable longerm beam with root moment and 

allowable strain constraints (lb) 
dcl = diameter of coilable longeron beam with frequency and root 

moment constraints (in) 
dcls = diameter of coilable longeron beam with root moment and 

allowable strain constraints (in) 
wcln = weight of coilable longeron beam with frequency and root 

moment constraints, neglecting the mass of the beam (lb) 
wclsn = weight of coilable longeron beam with root moment and 

allowable strain constraints , neglecting the mass of the beam (lb) 
dcln = diameter of coilable longeron beam with frequency and root 

moment constraints, neglecting the mass of the beam (in) 
dclsn = diameter of coilable longeron beam with root moment and 

allowable strain constraints, neglecting the mass of the beam (in) 
*I 



Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

ClearIalpha, c, mtip, len, e, rho, t, g, r, fs, sg, 
moment, momn, i, f, mbeam, m o m ,  wfreq, dmom, 
dfreq, wmomn, wfreqn, dmomn, dfreqn]; 

("Global Variable Assignments") 

a l p h a d ;  ~ ~ 0 . 2 ;  mtip=.16; len=1400/2.54; g=386; fs=l; sp.015; 
momn=alpha sg g mtip len; 

(*3 mil Aluminum*) 

e=10*10A6; rho=.l; t=.003; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len/g; 
moment=alpha sg g (mtip len + mbeam len/2); 

dfreq[fJ:= 2 (r/. FindRoot[1/2/Pi Sqrt[3* 
e i /(len "3 (mtip +.227 mbeam))]==f,{r,l}]); 

dmom= 2 (r/. Solve[fs moment / (Pi c e tA2)==r,{r}]); 

dfreqn[f ]:= 2 (r/. FindRsot[l/2/Pi Sqrt[3* 
e i /(IenA3 mtip)]==f,{r,l}]); 

dmomn= 2 (r/. Solve[fs momn /(Pi c e tA2)==r,{r}]); 

wfreq[f-]:= rho Pi t len dfreq[fl; 

m o r n =  rho Pi t len dmom; 

wfreqn[f-]:= rho Pi t len dfreqn[fl; 

wmomn= rho Pi t len dmomn; 

p l=Plot [Max[wmom,wfreq[fJ],{ f,.02,1}, 
Plots tyle->{ GrayLevel[.6]}, 
DisplayFunction->Identi ty] ; 

Plots tyle->{ GrayLevel[.6]}, 
DisplayFunction->Identity]; 

p5=Plot [Max[dmom,dfreq[fl],(f,.02,1}, 

p9=Plot [Max[wmomn,wfreqn[fl],{f,.02,1}, 
Plots tyle->{Dashing[{.Ol}]}, 
Display Function->Identity]; 

Plots tyle->{Dashing[{.04}]}, 
DisplayFunction->Identity]; 

pl3=Plot [Max[dmomn,dfreqn [fl],{f,.02,1}, 
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Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

(*STEM*) 

Clear[e, rho, t, r, i, moment, mbeam, wfreq, m o m ,  
wfreqn, wmomn, dfreq, dmom, dfreqn, dmomn]; 

e=30*10A6; rho=.3; k.005; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len/g; 
moment=alpha sg g (mtip len + mbeam led2); 

dfreq[f ]:= 2 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(len33 (mtip +.227 mbeam))]==f,{r,l}]); 

dmom= 2 (r/. Solve[fs moment / (Pi c e tA2)==r,{r}]); 

dfreqn[f ]:= 2 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(lenA3 mtip)]==f,{r,I)]); 

drnomn= 2 (r/. Solve[fs momn /(Pi c e t A2)==r,{r}]); 

wfreq[f - ]:= rho Pi t len dfreq[fl; 

m o m =  rho Pi t len dmom; 

wfreqn[f-]:= rho Pi t len dfreqn[fl; 

wmomn= rho Pi t len dmomn; 

p2=Plot[Max[wmom,wfreq[fl],{f,.02,1}, 
Plots tyle->{ GrayLevel[.6]}, 
Dis playFunction->Identity] ; 

Plots tyle->{ GrayLevel[.6]}, 
DisplayFunction->Identi ty] ; 

Plots tyle->{Dashing[{.Ol}]}, 
DisplayFunction->Identi ty]; 

Plots tyle->{Dashing[{.04}]}, 
DisplayFunction->Identity]; 

p6=Plot [Max[drnom,dfreq[fl],{f,.02,1}, 

plO=Plot [Max[wmomn,wfreqn[fl],{f,.02,1}, 

p 14=Plot w a x  [ dmomn,dfreqn [ fl] ,{ f,.02,1}, 
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Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

(*Rigidizable Beam") 

Clear[e, rho, t, r, i, moment, mbeam, wfreq, m o m ,  
wfreqn, wmomn, dfreq, dmom, dfreqn, dmomn]; 

e=4*10A6; rho=.05; k.011; i=Pi rA3 t; 
mbeam=rho 2 Pi r t ledg; 
moment=alpha sg g (mtip len + mbeam led2); 

dfreq[f I:= 2 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(len73 (mtip +.227 mbeam))]==f,{r,l}]); 

dmom= 2 (r/. Solve[fs m / (Pi c e t "2)==r,(r}]); 

dfreqn[f-]:= 2 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(lenA3 mtip)]==f,{r,l}]); 

dmomn= 2 (r/. Solve[fs momn /(Pi c e tA2)==r,{r}]); 

wfreq[f-]:= rho Pi t len dfreq[fl; 

m o m =  rho Pi t len dmom; 

wfreqn[f-]:= rho Pi t len dfreqn[fl; 

wmomn= rho Pi t len dmomn; 

p3=Plot[Max[wmom,wfreq[fJ],{f,.02,1}, 
Plots tyle->{ GrayLevel[.6]}, 
DisplayFunction->Identity]; 

p7=Plot [Max[ dmom,dfreq[fJ],(f,.O2,1}, 
Plots t yle->{ GrayLevel[.6]}, 
Displa yFunction->Identity] ; 

Plots tyle->{Dashing[{.Ol}]}, 
DisplayFunc tion->Identity]; 

Plots tyle->{Dashing[{.04}]}, 
Dis pla yFunction->Identity 1; 

pll=Plot[Max[wmomn,wfreqn[fl],{f,.02,1}, 

pl5=Plot [Max[dmomn,dfreqn[fJ],{f,.02,1}, 
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Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

("Coilable Longeron Beam*) 

Clearre, rho, a, r, i, moment, mbeam, wcl, wcls, epsilon, 
dcl, dcls, wcln, wclsn, dcln, dclsn]; 

epsilon=.0133; rho=.07; e=7.5*10A6; k1.5 a rA2; 
mbeam=3.4 (3 rho a len) / g; 
moment=alpha sg g (mtip len + rnbeam led2); 

dcl[f-]:= 2 (r/. FindRoot[{l.S Pi e a A 2  /(4 (1.14)"2 
*fs moment)==r, l/2/Pi Sqrtr3 e i /(lenA3 (rntip +.227 
*mbeam))I==f),{a,.l},{r~}l r [211); 

d c k  2 (r/. FindRoot[{lS Pi e aA2  /(4 (1.14)A2 
*fs moment)==r, Sqrt[4 a/Pi]/(2 r)==epsilon>,{a,.l},{r,3}][[2]1); 

dcln[f ]:= 2 (r/. FindRoot[{l.S Pi e aA2  /(4 (1.14)A2 
*fs m<mn)==r, 1/2/Pi Sqrt[3 e i /(len A3 mtip)]==f),{a,.l},{r,3}][[211); 

dclsn= 2 (r/. FindRoot[{l.S Pi e a A 2  /(4 (1.14)A2 
*fs momn)==r, Sqrt[4 a/Pi]/(2 r)==epsilon},{a,.l},{r,3}][ [2]1); 

wcl[f I:= 3.4 3 rho len (a/. FindRoot[{l.S Pi e a A 2  /(4 (1.14)A2 
*fs m%ment)==r, 1/2/Pi Sqrt[3 e i /(lenA3 (mtip +.227 

wcIs= 3.4 3 rho len (a/. FindRoot[{l.S Pi e a A 2  /(4 (1.14)A2 
*fs moment)==r, Sqrt[4 a/Pi]/(2 r)==epsi~on),{a,.l),{r,3}l[[llJ); 

wcln[f ]:= 3.4 3 rho len (a/. FindRoot[{l.S Pi e aA2  /(4 (1.14)"2 
*fs mohn)==r, l/2/Pi Sqrt[3 e i /(lenA3 mtip)]==f),{a,.l},{r,3~l[[l]l); 

*mbeam))l==f) ,{a,* 1Mr93Il [Ell I) ; 

w c h =  3.4 3 rho len (a/. FindRoot[{l.S Pi e a A 2  /(4 (1.14)"2 
*fs momn)==r, Sqrt[4 a/Pi]/(2 r)==epsiIon),{a,.l),(r,3}][[1]]); 

p4=Plot[Max[wcIs, wcl[fl],{f,.O2,1), 
Plots tyle->{ GrayLevel[.6]}, 
Dis pla yFunction->Identity]; 

p8=Plot [Max[dcis, dcl [fl],{f,.O2,1}, 
Plots tyle->{ GrayLevel[.6]}, 
Dis pla y Function->Identity] ; 

p 12=Plot [Max[wclsn,wcln[fl],{ f,.02,1); 
Plotstyle->{ Dashing[{.Ol)]}, 
Display Function->Identity] ; 

PlotStyle->{Dashing[{.04}]}, 
DisplayFunction->Identity]; 

p16=Plot[Max[dclsn,dcln[fJ],{f,.02,1}, 
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Appendix A - Weight and Diameter Beam Program as a Function of Frequency 

(*PI ,p2,p3,&p4 plot the weight equations including the mass of the beam. 

p9,plO,pll,&pl2 plot the weight equations not including the mass of the 
beam, using dashed lines for comparison. 

Similarly forp5p8, and p13-pl6, except they plot the diameters.*) 

ShowrPl,P2,P3,P49P9,Plo,Pll,Pl2, 
Dis play Function->$DisplayFunction, 
AxesLabel->{"Frequency (Hz)" ,"Weight (Ib)"}, 
PlotRange->{ {0,1},{0,25}}, 
PlotLabel->" Alum.,STEM,Rigid.,& C.L. for 14m"I; 

Show[P~,P6,P7,P8,P13,P14,P1~,P16, 
DispIa yFunction->$DisplayFunction, 
AxesLabel->{"Frequency (Hz)","Diameter (in)"}, 
PlotRange->{ {0,1},{0,45}}, 
PlotLabeb" Alum.,STEM,Rigid.,& C.L. for 14mt']; 
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Appendix B - Weight and Diameter Beam Program as a Function of Length 

Off[General::spelll]; Off[General::spell]; 

(*Variable Definitions 

alpha = dynamic overshoot factor 
C = local wall buckling constant 
mtip = mass applied to the tip of the beam (lb secA2 / in) 
len = length of the beam (m) NOTE: The beam length in this program is specified 

e = modulus of elasticity (psi) 
rho = weight density of beam (lbhnA3) 
t = wall thickness of beam (in) 
g = gravitational acceleration (in / secA2) 
r = radius of beam (in) 
a = area of longeron (inA2) 
epsilon = longeron allowable strain (idin) 
fs = factor of safety for strength (root moment) constraint 
sg = lateral acceleration loading coefficient 
moment = root moment (in lb) 
i = moment of inertia (in*4) 
f = natural bending frequency (Hz) 
mbeam = mass of beam (lb secA2 I' in) 
wmom = weight of tubular beam with root moment constraint (Ib) 
wfreq = weight of tubular beam with frequency constraint (lb) 
wcl = weight of coilable longeron with frequency and root 

wcls = weight of coilable longeron beam with root moment and 

in meters for plotting purposes. 

moment constraints (lb) 

allowable strain constraints (lb) 

Clear[alpha,c, mtip, len, e, rho, t, g, r, fs, sg, 
moment, 1, f, mbenm, wmom, wfreq]; 

(*Global Variable Assignments*) 

alphad; d . 2 ;  mtip=.16; f=.2; g=386; fs=l; sg=.O15; 
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Appendix B - Weight and Diameter Beam Program as a Function of Length 

(*3 mil Aluminum*) 

e=10*10A6; rho=.l; k.003; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len 100/2.54/g; 
moment=alpha sg g (mtip len 100/2.54 + mbeam len 100/2.54/2); 

wfreq[len-]:= rho 2 Pi t len 100/2.54 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(@en 100/2.54)A3 (mtip +.227 mbeam))] 
==f,{r,l}I); 

wmom[len - ]:= rho 2 Pi t len 10012.54 (r/. Solve[fs moment / (Pi c e tA2) 
==r,{r}I); 

p l=Plot [Max[wmom[len] ,wfreq[len]] ,{ len,3.5,28}, 
Plots tyle->{Hue[2/3]}, 
Dis playFunction->Identity]; 

(*6mil Aluminum*) 

Clear[e, rho, t, r, i, moment, mbeam, wfreq, m o m ] ;  

e=10*10A6; rho=.l; t=.006; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len 100/2.54/g; 
moment=alpha sg g (mtip len 100/2.54 + mbeam ien 100/2.54/2); 

wfreq[len ]:= rho 2 Pi t len 100/2.54 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /((len 1g0/2.54)A3 (mtip +.227 mbeam))] 
==f,W}I); 
wmom[len - I:= rho 2 Pi t len 100/2.54 (r/. Solve[fs moment / (Pi c e tA2) 
==r,WI); 
p2=Plot [Max[wmom[len],wfreq[len]],{len,3.5,28}, 

Plots tyle->(Hue[.OS]}, 
DisplayFunction->Identity]; 
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Appendix B - Weight and Diameter Beam Program as a Function of Length 

(*STEM*) 

Clear[e, rho, t, r, i, moment, mbeam, wfreq, wmom]; 

e=30*10A6; rho=.3; k.005; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len 100/2.54/g; 
moment=alpha sg g (mtip len 100/2.54 + mbeam len 100/2.54/2); 

wfreq[len ]:= rho 2 Pi t len 100/2.54 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /((len 130/2.54)"3 (mtip +.227 mbeam))] 
==f,Cr,lIl); 
wmom[len - I:= rho 2 Pi t len 100/2.54 (r/. Solve[fs moment / (Pi c e tA2) 
==r,Wl); 

p3=Plot [Max[wmom[len],wfreq[len]],{len,3.5,28}, 
PlotStyle->{Hue[l/3]}, 
Displa yFunction->Identity] ; 

(*Rigidizable Beam*) 

Clear[e, rho, t, r, i, moment, mbeam, wfreq, wmom]; 

e=4*10A6; rho=.05; t=.011; i=Pi rA3 t; 
mbeam=rho 2 Pi r t len 100/2.54/g; 
moment=alpha sg g (mtip len 10012.54 + mbeam len 100/2.54/2); 

wfreq[len ]:= rho 2 Pi t len 100/2.54 (r/. FindRoot[l/2/Pi Sqrt[3* 
e i /(@en 130/2.54)A3 (mtip +.227 mbeam))] 
==f,{rJII); 
mmom[len - I:= rho 2 Pi t len 100/2.54 (r/. SoIve[fs moment / (Pi c e tA2) 
==r,{rIl); 

p4=Plot [Max[wmom[len],wfreq[len]],{len,3.5,28}, 
Plotstyle->{Hue[l]), 
DisplayFunetion->Identi ty]; 



Appendix B - Weight and Diameter Beam Program as a Function of Length 

(* Coilable Longeron Beam*') 

Clear[e, rho, a, r, i, moment, mbeam, wcl, wcls, epsilon]; 

epsilon=.0133; rho=.07; e=7.5*1OA\6; i = l S  a rA2; 
mbeam=3.4 (3 rho a len 100/2.54) / g; 
moment=alpha sg g (mtip len 100/2.54 + mbeam len 100/2.54/2); 

wcl[len I:= 3.4 3 rho len 100/2.54 (a/. FindRoot[{l.S Pi e aA2  /(4* 
(1,14)Azfs moment)==r, l/2/Pi Sqrt[3 e i /((len 100/2.54)"3* 
(mtip +.227 mbeam))]==f),{a,.l},{r,3}]); 

wcls@en I:= 3.4 3 rho len 100/2.54 (a/. FindRoot[{l.S Pi e aA2 /(4* 
(1.14) A2-fs moment)==r, Sqrt[4 a/Pi]/(2 r)==epsilon},{a,d}, 

pS=Plo t [Max [wcls Den], wcl [len]] ,{ len,3.5,28}, 

{r,311); 

Plots tyle->{Hue[l/2]}, 
DisplayFunction->Identity] ; 

ShOW[Pl,P2,P3,P4,P5, 
DisplayFunction->$DisplayFunction, 
AxesLabel->{"Beam Length (m)"," Weight Ob)"}, 
PlotRange-> { { 0~0},{0,70}}, 
PlotLabel->"Frequency = 0.2 Hz"]; 
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